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Abstract—Autopilot is a vital control system in modern 

aviation, designed to stabilize an aircraft’s heading and 

altitude, ensuring a consistent flight path. Stability in such 

systems is determined by the aircraft’s dynamic behavior, 

which can be analyzed using mathematical concepts like 

complex eigenvalues. This study focuses on the application of 

complex eigenvalues in understanding aircraft dynamic 

system stability for autopilot control. The control matrix of 

the system generates complex eigenvalues. If the real parts 

are negative, the system is stable. Otherwise, the system is 

unstable as oscillations occur. This study uses oscillation 

theory to analyze these behaviors and provides control 

adjustments to achieve system stability, where oscillations are 

near zero. The developed program replicates an autopilot 

stabilization system, showing how adjustments can be made 

to stabilize the aircraft based on the analysis of eigenvalues. 

This study provides valuable insights into the practical 

application of complex eigenvalues, which can contribute to 

advancements in autopilot algorithms and other stability 

control fields, ultimately helping to create more reliable and 

efficient control systems.  
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I.   INTRODUCTION 

In today’s aviation world, autopilot is an essential 

system in an aircraft that controls the aircraft without 

continuous direct human assistance. This system is capable 

of performing many functions, ranging from maintaining a 

constant heading and altitude during cruising and 

stabilizing the aircraft’s position to assisting the taxiing 

and landing process. One of the vital functions of an 

aircraft autopilot system is stabilization, which keeps the 

aircraft from stalling or rolling midair. In this paper, we 

delve deeper regarding how complex eigenvalues play a 

crucial role in the stabilization function of an autopilot 

system. 

 The stability of an aircraft’s dynamic system is usually 

can be modeled by a set of differential equations. 

Analyzing the eigenvalues of the system’s stability matrix 

leads to an understanding of its behavior. The oscillatory 

behavior of the system can be detected through complex 

eigenvalues. If oscillations are exhibited by the system, 

they can lead to aircraft instability if certain actions are not 

taken.    

This paper focuses on how complex eigenvalues can be 

used to evaluate the dynamic stability of an aircraft. By 

analyzing the stability matrix of the system and its 

eigenvalues, it can be determined whether the aircraft is 

likely to remain stable or become unstable with the current 

control settings. The insights from this analysis can 

improve autopilot algorithms, ensuring they keep the 

aircraft stable and prevent unwanted oscillations or 

instability during cruising. The methods discussed in this 

paper can also be applied in other fields where stability 

control plays a crucial role in the system performance, 

helping to create more robust and reliable control systems.   

 

 

II.   THEORETICAL BASIS 

A. Matrix  

A matrix is a rectangular array of numbers. A matrix with 

m × n size means that it has m number of rows and n 

number of columns in the matrix, with m and n both being 

natural numbers.  

 
Fig. 2.1 Definition of A Matrix. (Source: [1]) 

Operations can be done to matrix, such as addition, 

subtraction, multiplication by a scalar, and multiplication 

of matrices.  

1. Addition and Subtraction 

Matrix addition involves adding the 

corresponding elements of two matrices. On the 

other hand, matrix subtraction involves subtracting 

the corresponding elements of two matrices. These 

operations can be done only if the matrices have the 

same dimensions. 

 
Fig. 2.2 Matrix Addition. (Source: [1]) 
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2. Scalar multiplication 

Matrix multiplication by a scalar involves 

multiplying each element of the matrix by a scalar 

value. 

 
Fig. 2.3 Matrix Multiplication by A Scalar. (Source: [1]) 

3. Multiplication of matrices 

Matrix multiplication can be carried out only if 

the number of columns in the first matrix matches 

the number of rows in the second matrix. The 

resulting product matrix will have dimensions equal 

to the number of rows in the first matrix and the 

number of columns in the second matrix. Each 

element of Mij, is the dot product of the i-th row of 

the first matrix and the j-th column of the second 

matrix. 

 

 
Fig. 2.4 Matrix Multiplication. (Source: [1]) 

 

B. Determinants 

A determinant is a scalar value that can be calculated 

from a square matrix. A square matrix, commonly written 

as an n × n matrix, is a matrix where the number of rows 

equals to the number of columns. The determinant of 

matrix A is usually written as det(A) or |A|. 

 
Fig. 2.5 Definition of A Determinant. (Source: [2]) 

One important information that the determinant provides 

is a matrix’s invertibility. If the determinant is zero, the 

matrix is singular, meaning that it cannot be inverted. 

Otherwise, the matrix is invertable. The determinant of a 

matrix can also be interpreted as a scaling factor on how 

the matrix affects the volume of a geometric object, such 

as a parallelogram (in 2D) or parallelepiped (in 3D), that is 

formed by vectors. 

 

C. Eigenvalues 

An eigenvalue, typically written as λ, is a scalar value 

that represent the characteristics of a square matrix. It 

measures shows how the matrix transforms a vector. If λ > 

1, the vector is stretched, whereas if 0 < λ < 1. If λ = 0, the 

vector becomes a zero vector. For a square matrix A and a 

non-zero vector x, known as an eigenvector, the eigenvalue 

can be seen like in the following figure: 

 
Fig. 2.6 Definition of An Eigenvalue. (Source: [3]) 

A matrix can have multiple eigenvalues and each of them 

are associated with a corresponding eigenvector. 

Eigenvalues are found by setting the determinant of the 

matrix minus λ times the identity matrix equal to zero. 

 
Fig. 2.7 Eigenvalue Formula. (Source: [3]) 

 

D. Complex Numbers 

A complex number is a number that consists of two parts: 

a real part and an imaginary part. Either the real part or the 

imaginary part can be zero. The imaginary unit is 

represented by i, with 𝑖 =  √−1; therefore, 𝑖2 =  −1. 
 

 
Fig. 2.8 Definition of A Complex Number. (Source: [4]) 

 An Argand diagram is used represent complex numbers 

in a two-dimensional coordinate system. The horizontal 

axis represents the real part and the vertical axis represents 

the imaginary part of the complex number. The complex 

number is shown as a vector or point in this diagram.  

 
Fig. 2.9 Argand Diagram. (Source: [4]) 

The distance from the origin to the complex number in 

the diagram is called a magnitude.  

 
Fig. 2.10 Magnitude Formula. (Source: [4]) 

The angle θ formed with the real axis is called an 

argument. 

 
Fig. 2.11 Argument Formula. (Source: [4]) 

 

 E. Autopilot Stabilization System 

Autopilot is a system in a vehicle that is capable of 

controlling the vehicle without continuous manual 

assistance. Nowadays, autopilot is used in many types of 

vehicles, from cars to aircrafts. Modern autopilot systems 

are highly advanced, offering various functions depending 

on the needs of the vehicle.  

In an aircraft, autopilot systems can perform many flight 

maneuvers, such as following the flight plan, assisting in 

taxiing and landing, and stabilizing the aircraft’s heading 

and altitude. It can minimize human errors and fatigue. 

Autopilot can also react quicker than humans in situations 

requiring immediate action, making the flying experience 

safer. 

One of the most important functions of an aircraft 

autopilot system is stabilization. Stabilization maintains 

the aircraft’s angles of rotation or movements of the 

airplane to prevent oscillations. An aircraft typically uses a 

three-axis autopilot system, which balances three rotation 

angles: roll, pitch, and yaw. Roll refers to the rotation 

around the longitudinal axis (X-axis) that controls the tilt 

of the wings. Pitch is the rotation around the lateral axis 
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(Y-axis) that controls the up-and-down angle of the nose. 

Yaw is the rotation around the vertical axis (Z-axis) that 

controls the left-and-right direction of the nose [5]. 

Stabilization may involve additional axes, such as 

translation axes, in more complex aircraft dynamics, or 

fewer axes when less control is needed.  

 
Fig. 2.12 Three-Axis of Rotation. (Source: [5]) 

Stabilization also deals with oscillation, which is the 

repetitive back-and-forth movement that can happen in any 

of the axes. Oscillations are linked to eigenvalues as 

eigenvalues can be used to determine whether a fixed point 

is stable or unstable. The stability behavior around the 

fixed point, in this case, a system, can be determined by the 

existence of the real part of the eigenvalues, which 

indicates the amplitude of the oscillations. If the real part 

is negative, the system is stable as the oscillations will 

dampen over time. If the real part is positive, the system is 

unstable since the oscillations will grow, leading to 

instability. If the real part is zero, the system is marginally 

stable. It behaves as an undamped oscillator, but this case 

is not ideal for control systems. On the other hand, the 

imaginary part of the complex eigenvalues represents the 

frequency of oscillations, which does not directly affect the 

stability [6].  

  
Fig. 2.13 Negative Real Part in Complex Eigenvalues. (Source: [6]) 

 

 
Fig. 2.14 Positive Real Part in Complex Eigenvalues. (Source: [6]) 

 

  
 Fig. 2.15 Zero Real Part in Complex Eigenvalues. (Source: [6]) 

 

 

III.   METHODOLOGY 

Python programming language in utilized in 

implementing the source code for this problem due to its 

extensive libraries. Specifically, Python’s NumPy library 

is used in handling matrix operations and calculating 

eigenvalues. These calculations are performed using a 

library to ensure high precision, since manual calculations 

can be complex and error-prone. 

The matrix used in this implementation is a square 

matrix (n × n) with n depending on user’s input. The 

number of rows in matrix A corresponds to the number of 

control variables in the autopilot system. For example, the 

user uses the three-axis autopilot system, then the number 

of control variables is three. Matrix A represents the 

influence between the control variable, and the value can 

vary between aircrafts. Each element ranges between -1 

and 1 (inclusive), similar to percentages. A negative value 

indicates a negative correlation, whereas a positive value 

shows a direct influence.  

The following source code allows for input of matrix A: 
def input_matrix(): 

dim = int(input("Amount of control variables: 

"))  
while dim < 1: 

 print("The amount of control variables must     

   be at least 1. Please try again.") 

 dim = int(input("Amount of control 

variables: ")) 

 

print(f"Input the influence (-1 to 1) between 

control variables in {dim} x {dim} 

matrix form.")  

mat = [] 

 for i in range(dim): 

   while True: 

     row = list(map(float, input(f"Row {i+1}:  

            ").split())) 

 

     if len(row) != dim: 

       print(f"The row must contain  

exactly {dim} elements.  

Please try again.") 

       continue 

 

     if all(0 <= abs(x) <= 1 for x in  

row): 

       mat.append(row) 

       break  

 

     else: 

       print("All elements must be  

         between -1 and 1 (inclusive).  

         Please try again.") 

return np.array(mat) 

     Ideally, matrix A in an aircraft is to maintain stability 

by manufacturers. However, external factors such as 

turbulence, electrical malfunctions, or other disturbances 

can cause imbalances in the system. The stability of matrix 

A, which directly affects the control system stability, can 

be evaluated through its eigenvalues. According to the 

theoretical basis, if the real part of all eigenvalues is 

negative, the system is considered stable. If any eigenvalue 

has a positive real part, the system is unstable. If the real 

part is zero, the system is marginally stable, which is also 

considered unstable in practice. 
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The following source code checks system control 

stability based on matrix A: 
def check_stability(A):  

eigval = np.linalg.eigvals(A) 

is_stable = all(np.real(e) < 0 for e in   

              eigval)  

return eigval, is_stable 

If system control is unstable, adjustments may be needed 

to stabilize the aircraft depending on the initial state control 

(x0). The initial state control is a vector with n elements, 

with the number of elements depending on the 

configuration of its matrix A. For example, in a tree-axis 

autopilot system, the control variables—roll, pitch, and 

yaw—are in radians. 

The following source code allows for the input of initial 

state vector x0: 
def input_initial_state(dim):  

while True: 

 print(f"Input the initial control state  

   vector for each variable ({dim} elements):  

   ") 

 x = list(map(float, input().split())) 

 if len(x) != dim: 

   print(f"The vector must contain exactly  

    {dim} elements. Please try again.") 

   continue 

   return np.array(x) 

The system is considered stable if all elements of initial 

state vector x0 are less than 0.1, which is the chosen 

threshold for oscillation stability. Oscillations under 0.1 are 

considered to be sufficiently damped over time, as shown 

in Figure 2.13. Although there is no specific threshold for 

aircraft stability, it is commonly understood that an aircraft 

is designed to handle small deviations near zero without 

significantly affecting its stability, as explained in [7].  

If the system is unstable, corrections may be applied to 

bring the control state closer to stability. The recommended 

corrections for control are determined by comparing the 

current state to the desired state, which is a zero vector. 

Certain limits on the correction are applied in order to 

prevent extreme changes in aircraft control, though 

specific limitations vary. As stated in [7], the system 

should be able to handle moderate changes in control, but 

extreme adjustments should be avoided, as they can be 

unpredictable and difficult to manage.  

The following source code calculates corrections and 

applies them: 
def recommend_correction(status):  

# fixed maximum correction limit 

max_corr_limit = 10   

needed_corr = -status  

# maximum correction limit as 10% 

max_corr = np.maximum(0.1 * np.abs(status),  

            max_corr_limit)  

 

# compares the corrections 

corr = np.sign(needed_corr) * 

        np.minimum(np.abs(needed_corr), 

        max_corr) 

  return corr 

 

def apply_correction(status, corr): 

updated_status = status + corr 

return updated_status 

The program continuously asks the user whether they 

wish to apply the recommended corrections while the 

aircraft remains unstable, this simulates the ongoing 

stabilization of an aircraft over time. The program stops 

either when stability is achieved—i.e., when all elements 

of the state vector x are within the stability threshold—or 

when the user decides to stop the process.  

The following source code shows the overall flow of the 

program:  
def main(): 

... 

A = input_matrix() 

eigval, is_stable = check_stability(A) 

print("Eigenvalues:") 

for eig in eigval: 

 if np.iscomplex(eig): 

  print(f"{eig.real:.3f} + {eig.imag:.3f}j" 

   if eig.imag >= 0 else f"{eig.real:.3f} –  

   {abs(eig.imag):.3f}j") 

 else: 

  print(f"{eig.real:.3f} + 0j") 

 

 if is_stable: 

  print("System control is stable. No further  

   action needed.") 

  quit() 

 else: 

  print("System control is unstable. 

   Adjustments may be needed.\n") 

     

# initial state vector has to match the matrix  

  size  

x = input_initial_state(A.shape[0])  

while True: 

 print(f"\nCurrent state: {x}") 

 # stability threshold  

 if not np.all(np.abs(x) < 0.1):   

   print("System is unstable.") 

   corr = recommend_correction(x) 

   print(f"Correction recommendation:  

    {corr}") 

 

   # asks about applying the correction 

   apply_corr = input("Apply control  

                 corrections? (y/n): ") 

                 .strip().lower() 

   if apply_corr == 'y': 

    x = apply_correction(x, corr) 

    print(f"State after corrections are  

     applied: {x}") 

   else:  

    print("No corrections applied.") 

         

 else: 

   print("System is stable.") 

   quit() 

 

 # asks about continuing the simulation         

 cont = input("Continue simulation? (y/n):  

         ").strip().lower()  

 if cont != 'y': 

   print("Simulation ended.") 

   break 

 

 

IV.   RESULTS AND ANALYSIS 

Testing is conducted on the source code to evaluate its 

functionality and generate results. These results are then 

further analyzed to provide insights. The data used in 

testing are dummy data, consisting of randomly selected 
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numbers designed to be logical and consistent with related 

research.   

A. Test Case 1: Stable System Control without 

Complex Parts in Eigenvalues 

This test case evaluates a stable system control without 

complex parts in its eigenvalues. The matrix A used is as 

follows: 

A = [
−0.6 0.3 0.2
0.1 −0.8 0.4
0.2 0.1 −0.2

] 

The program receives the matrix A input and checks its 

eigenvalues. Since all of its eigenvalues are negative in the 

real parts, the program determines that the system control 

is stable and no further action is needed. 

 
Fig. 4.1 Test Case 1 Results. (Source: Author) 

 

B. Test Case 2: Stable System Control with Complex 

Parts in Eigenvalues 

This test case evaluates a stable system control with 

complex parts in its eigenvalues. The matrix A used is as 

follows: 

A = [
−0.5 0.2 0.1
0.1 −0.7 0.3
0.2 0.1 −0.6

] 

The program receives the matrix A input and checks its 

eigenvalues. Since all of its eigenvalues are negative in the 

real parts, the program determines that the system control 

is stable and no further action is needed. The complex parts 

do not directly affect the oscillations, so they do not affect 

the system stability. 

 
Fig. 4.2 Test Case 2 Results. (Source: Author) 

 

C. Test Case 3: Unstable System Control and Stable 

Initial State Vector 

This test case evaluates an unstable system control and 

a stable initial state vector. The matrix A and vector x0 used 

are as follows: 

A = [
0.8 −0.3 0.4
0.5 0.9 −0.2

−0.4 0.3 1.0
] 

 

x0 = [
0.04

−0.05
0.03

] 

 

The program receives the matrix A as input and checks 

its eigenvalues. Since none of its eigenvalues are negative 

in the real parts, the program determines that the system 

control is unstable and adjustments may be needed. The 

program receives the vector x0 as input and checks its 

elements. As all elements fall within the stability threshold, 

indicating that the oscillations are near zero, the system is 

considered stable.  

 
Fig. 4.3 Test Case 3 Results. (Source: Author) 

 

D. Test Case 4: Unstable Three-Axis Autopilot 

System Control and Unstable Initial State Vector 

This test case evaluates an unstable three-axis autopilot 

system control and an unstable initial state vector. The 

matrix A and vector x0 used are as follows: 

A = [
0.8 −0.3 0.4
0.5 0.9 −0.2

−0.4 0.3 1.0
] 

 

x0 = [
12.8

−1.742
0.06

] 

The program receives the matrix A as input and checks 

its eigenvalues. Since none of its eigenvalues are negative 

in the real parts, the program determines that the system 

control is unstable and adjustments may be needed. The 

program receives the vector x0 as input and checks its 

elements. As not all elements fall within the stability 

threshold, the system is considered unstable.  

 

Fig. 4.4 Test Case 4 Results Part 1. (Source: Author) 

Since the system is initially unstable, it recommends 

specific control corrections based on the current state x0. 

When the recommendation is rejected, no corrections are 

applied.  

 
Fig. 4.5 Test Case 4 Results Part 2. (Source: Author) 

Since no corrections are applied, the current state x 

remains the same as x0. With the system still unstable, it 
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continues to recommend control corrections based on the 

current state x in order to reach desired state. When the 

recommendation is accepted, the corrections are applied to 

the state x.  

 
Fig. 4.6 Test Case 4 Results Part 3. (Source: Author) 

The system continuously monitors the state of the 

system and recommends control corrections based on the 

updated state x. These corrections are recalculated after 

every state update. This iterative process continues until 

the system achieves stability, where the oscillations fall 

within the set threshold. This process continues as long as 

the simulation is running and is not interrupted by the user.  

 
Fig. 4.7 Test Case 4 Results Part 4. (Source: Author) 

 

E. Test Case 5: Unstable System Control with Non-

Three-Axis Configuration and Unstable Initial State 

Vector 

This test case evaluates an unstable system control with 

non-three-axis configuration and an unstable initial state 

vector. The matrix A and vector x0 used are as follows: 

A = [

0.5 0.7 −0.8 0.6
−0.3 1.0 0.5 −0.4
0.4 −0.6 0.9 0.8

−0.5 0.3 −0.7 1.0

] 

 

x0 = [

0.9
−0.8
0.6
0.7

] 

The program receives the matrix A with dimensions 

other than 3 × 3 as input and checks its eigenvalues. Since 

none of its eigenvalues are negative in the real parts, the 

program determines that the system control is unstable and 

adjustments may be needed. The program receives the 

vector x0 with a size corresponding to the number of rows 

in matrix A as input and checks its elements. As none of 

the elements fall within the stability threshold, the system 

is considered unstable. 

 
Fig. 4.8 Test Case 5 Results Part 1. (Source: Author) 

As the system is initially unstable, it recommends certain 

control corrections based on the current state x0 that could 

stabilize the system and reduce oscillations. When the 

recommendation is rejected, no corrections are applied.  

 
Fig. 4.9 Test Case 5 Results Part 2. (Source: Author) 

Since no corrections are applied, the current state x 

remains the same as x0. The system continues to 

recommend control corrections based on the current state x 

in order to reach desired state when the system is still 

unstable. However, the process can be interrupted by the 

user, halting the simulation. 

 
Fig. 4.10 Test Case 5 Results Part 3. (Source: Author) 

 

 

V.   CONCLUSION 

This study successfully analyzes the role of complex 

eigenvalues in an aircraft dynamic system stability for 

autopilot control. The developed program replicates the 

functionality of an autopilot stabilization system and 

determines system stability by examining the real parts of 

its matrix eigenvalues. Additionally, it can recommend 

control adjustments to achieve system stability, where 

oscillations are near zero, as demonstrated by the test cases 

conducted. 

The program can be further enhanced to handle external 

factors that affect control like wind, simulating real-life 

conditions. Using concrete data from experiments in 

further development could also improve the program’s 

accuracy. 

In conclusion, the analysis of aircraft dynamic system 

stability for autopilot control through complex eigenvalues 

offers valuable insights regarding the practical application 

of the complex eigenvalues concept. These insights can 

contribute to advancements in autopilot algorithms and 

other stability control fields, helping create more reliable 

and efficient control systems.   

 

 

VI.   APPENDIX 

The source code for this paper, titled Analyzing Aircraft 

Dynamic System Stability for Autopilot Control through 

Complex Eigenvalues, can be accessed at: 

 https://github.com/naomirisaka/Makalah-Algeo  
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