
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Analyzing Aircraft Dynamic System Stability for

Autopilot Control through Complex Eigenvalues

Naomi Risaka Sitorus – 135231221,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523122@std.stei.itb.ac.id, 2naomi.risaka@gmail.com

Abstract—Autopilot is a vital control system in modern

aviation, designed to stabilize an aircraft’s heading and

altitude, ensuring a consistent flight path. Stability in such

systems is determined by the aircraft’s dynamic behavior,

which can be analyzed using mathematical concepts like

complex eigenvalues. This study focuses on the application of

complex eigenvalues in understanding aircraft dynamic

system stability for autopilot control. The control matrix of

the system generates complex eigenvalues. If the real parts

are negative, the system is stable. Otherwise, the system is

unstable as oscillations occur. This study uses oscillation

theory to analyze these behaviors and provides control

adjustments to achieve system stability, where oscillations are

near zero. The developed program replicates an autopilot

stabilization system, showing how adjustments can be made

to stabilize the aircraft based on the analysis of eigenvalues.

This study provides valuable insights into the practical

application of complex eigenvalues, which can contribute to

advancements in autopilot algorithms and other stability

control fields, ultimately helping to create more reliable and

efficient control systems.

Keywords—Aircraft Stabilization, Autopilot Systems,

Complex Numbers, Eigenvalues.

I. INTRODUCTION

In today’s aviation world, autopilot is an essential

system in an aircraft that controls the aircraft without

continuous direct human assistance. This system is capable

of performing many functions, ranging from maintaining a

constant heading and altitude during cruising and

stabilizing the aircraft’s position to assisting the taxiing

and landing process. One of the vital functions of an

aircraft autopilot system is stabilization, which keeps the

aircraft from stalling or rolling midair. In this paper, we

delve deeper regarding how complex eigenvalues play a

crucial role in the stabilization function of an autopilot

system.

 The stability of an aircraft’s dynamic system is usually

can be modeled by a set of differential equations.

Analyzing the eigenvalues of the system’s stability matrix

leads to an understanding of its behavior. The oscillatory

behavior of the system can be detected through complex

eigenvalues. If oscillations are exhibited by the system,

they can lead to aircraft instability if certain actions are not

taken.

This paper focuses on how complex eigenvalues can be

used to evaluate the dynamic stability of an aircraft. By

analyzing the stability matrix of the system and its

eigenvalues, it can be determined whether the aircraft is

likely to remain stable or become unstable with the current

control settings. The insights from this analysis can

improve autopilot algorithms, ensuring they keep the

aircraft stable and prevent unwanted oscillations or

instability during cruising. The methods discussed in this

paper can also be applied in other fields where stability

control plays a crucial role in the system performance,

helping to create more robust and reliable control systems.

II. THEORETICAL BASIS

A. Matrix

A matrix is a rectangular array of numbers. A matrix with

m × n size means that it has m number of rows and n

number of columns in the matrix, with m and n both being

natural numbers.

Fig. 2.1 Definition of A Matrix. (Source: [1])

Operations can be done to matrix, such as addition,

subtraction, multiplication by a scalar, and multiplication

of matrices.

1. Addition and Subtraction

Matrix addition involves adding the

corresponding elements of two matrices. On the

other hand, matrix subtraction involves subtracting

the corresponding elements of two matrices. These

operations can be done only if the matrices have the

same dimensions.

Fig. 2.2 Matrix Addition. (Source: [1])

mailto:113523122@std.stei.itb.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

2. Scalar multiplication

Matrix multiplication by a scalar involves

multiplying each element of the matrix by a scalar

value.

Fig. 2.3 Matrix Multiplication by A Scalar. (Source: [1])

3. Multiplication of matrices

Matrix multiplication can be carried out only if

the number of columns in the first matrix matches

the number of rows in the second matrix. The

resulting product matrix will have dimensions equal

to the number of rows in the first matrix and the

number of columns in the second matrix. Each

element of Mij, is the dot product of the i-th row of

the first matrix and the j-th column of the second

matrix.

Fig. 2.4 Matrix Multiplication. (Source: [1])

B. Determinants

A determinant is a scalar value that can be calculated

from a square matrix. A square matrix, commonly written

as an n × n matrix, is a matrix where the number of rows

equals to the number of columns. The determinant of

matrix A is usually written as det(A) or |A|.

Fig. 2.5 Definition of A Determinant. (Source: [2])

One important information that the determinant provides

is a matrix’s invertibility. If the determinant is zero, the

matrix is singular, meaning that it cannot be inverted.

Otherwise, the matrix is invertable. The determinant of a

matrix can also be interpreted as a scaling factor on how

the matrix affects the volume of a geometric object, such

as a parallelogram (in 2D) or parallelepiped (in 3D), that is

formed by vectors.

C. Eigenvalues

An eigenvalue, typically written as λ, is a scalar value

that represent the characteristics of a square matrix. It

measures shows how the matrix transforms a vector. If λ >

1, the vector is stretched, whereas if 0 < λ < 1. If λ = 0, the

vector becomes a zero vector. For a square matrix A and a

non-zero vector x, known as an eigenvector, the eigenvalue

can be seen like in the following figure:

Fig. 2.6 Definition of An Eigenvalue. (Source: [3])

A matrix can have multiple eigenvalues and each of them

are associated with a corresponding eigenvector.

Eigenvalues are found by setting the determinant of the

matrix minus λ times the identity matrix equal to zero.

Fig. 2.7 Eigenvalue Formula. (Source: [3])

D. Complex Numbers

A complex number is a number that consists of two parts:

a real part and an imaginary part. Either the real part or the

imaginary part can be zero. The imaginary unit is

represented by i, with 𝑖 = √−1; therefore, 𝑖2 = −1.

Fig. 2.8 Definition of A Complex Number. (Source: [4])

 An Argand diagram is used represent complex numbers

in a two-dimensional coordinate system. The horizontal

axis represents the real part and the vertical axis represents

the imaginary part of the complex number. The complex

number is shown as a vector or point in this diagram.

Fig. 2.9 Argand Diagram. (Source: [4])

The distance from the origin to the complex number in

the diagram is called a magnitude.

Fig. 2.10 Magnitude Formula. (Source: [4])

The angle θ formed with the real axis is called an

argument.

Fig. 2.11 Argument Formula. (Source: [4])

 E. Autopilot Stabilization System

Autopilot is a system in a vehicle that is capable of

controlling the vehicle without continuous manual

assistance. Nowadays, autopilot is used in many types of

vehicles, from cars to aircrafts. Modern autopilot systems

are highly advanced, offering various functions depending

on the needs of the vehicle.

In an aircraft, autopilot systems can perform many flight

maneuvers, such as following the flight plan, assisting in

taxiing and landing, and stabilizing the aircraft’s heading

and altitude. It can minimize human errors and fatigue.

Autopilot can also react quicker than humans in situations

requiring immediate action, making the flying experience

safer.

One of the most important functions of an aircraft

autopilot system is stabilization. Stabilization maintains

the aircraft’s angles of rotation or movements of the

airplane to prevent oscillations. An aircraft typically uses a

three-axis autopilot system, which balances three rotation

angles: roll, pitch, and yaw. Roll refers to the rotation

around the longitudinal axis (X-axis) that controls the tilt

of the wings. Pitch is the rotation around the lateral axis

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

(Y-axis) that controls the up-and-down angle of the nose.

Yaw is the rotation around the vertical axis (Z-axis) that

controls the left-and-right direction of the nose [5].

Stabilization may involve additional axes, such as

translation axes, in more complex aircraft dynamics, or

fewer axes when less control is needed.

Fig. 2.12 Three-Axis of Rotation. (Source: [5])

Stabilization also deals with oscillation, which is the

repetitive back-and-forth movement that can happen in any

of the axes. Oscillations are linked to eigenvalues as

eigenvalues can be used to determine whether a fixed point

is stable or unstable. The stability behavior around the

fixed point, in this case, a system, can be determined by the

existence of the real part of the eigenvalues, which

indicates the amplitude of the oscillations. If the real part

is negative, the system is stable as the oscillations will

dampen over time. If the real part is positive, the system is

unstable since the oscillations will grow, leading to

instability. If the real part is zero, the system is marginally

stable. It behaves as an undamped oscillator, but this case

is not ideal for control systems. On the other hand, the

imaginary part of the complex eigenvalues represents the

frequency of oscillations, which does not directly affect the

stability [6].

Fig. 2.13 Negative Real Part in Complex Eigenvalues. (Source: [6])

Fig. 2.14 Positive Real Part in Complex Eigenvalues. (Source: [6])

 Fig. 2.15 Zero Real Part in Complex Eigenvalues. (Source: [6])

III. METHODOLOGY

Python programming language in utilized in

implementing the source code for this problem due to its

extensive libraries. Specifically, Python’s NumPy library

is used in handling matrix operations and calculating

eigenvalues. These calculations are performed using a

library to ensure high precision, since manual calculations

can be complex and error-prone.

The matrix used in this implementation is a square

matrix (n × n) with n depending on user’s input. The

number of rows in matrix A corresponds to the number of

control variables in the autopilot system. For example, the

user uses the three-axis autopilot system, then the number

of control variables is three. Matrix A represents the

influence between the control variable, and the value can

vary between aircrafts. Each element ranges between -1

and 1 (inclusive), similar to percentages. A negative value

indicates a negative correlation, whereas a positive value

shows a direct influence.

The following source code allows for input of matrix A:
def input_matrix():

dim = int(input("Amount of control variables:

"))
while dim < 1:

 print("The amount of control variables must

 be at least 1. Please try again.")

 dim = int(input("Amount of control

variables: "))

print(f"Input the influence (-1 to 1) between

control variables in {dim} x {dim}

matrix form.")

mat = []

 for i in range(dim):

 while True:

 row = list(map(float, input(f"Row {i+1}:

 ").split()))

 if len(row) != dim:

 print(f"The row must contain

exactly {dim} elements.

Please try again.")

 continue

 if all(0 <= abs(x) <= 1 for x in

row):

 mat.append(row)

 break

 else:

 print("All elements must be

 between -1 and 1 (inclusive).

 Please try again.")

return np.array(mat)

 Ideally, matrix A in an aircraft is to maintain stability

by manufacturers. However, external factors such as

turbulence, electrical malfunctions, or other disturbances

can cause imbalances in the system. The stability of matrix

A, which directly affects the control system stability, can

be evaluated through its eigenvalues. According to the

theoretical basis, if the real part of all eigenvalues is

negative, the system is considered stable. If any eigenvalue

has a positive real part, the system is unstable. If the real

part is zero, the system is marginally stable, which is also

considered unstable in practice.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

The following source code checks system control

stability based on matrix A:
def check_stability(A):

eigval = np.linalg.eigvals(A)

is_stable = all(np.real(e) < 0 for e in

 eigval)

return eigval, is_stable

If system control is unstable, adjustments may be needed

to stabilize the aircraft depending on the initial state control

(x0). The initial state control is a vector with n elements,

with the number of elements depending on the

configuration of its matrix A. For example, in a tree-axis

autopilot system, the control variables—roll, pitch, and

yaw—are in radians.

The following source code allows for the input of initial

state vector x0:
def input_initial_state(dim):

while True:

 print(f"Input the initial control state

 vector for each variable ({dim} elements):

 ")

 x = list(map(float, input().split()))

 if len(x) != dim:

 print(f"The vector must contain exactly

 {dim} elements. Please try again.")

 continue

 return np.array(x)

The system is considered stable if all elements of initial

state vector x0 are less than 0.1, which is the chosen

threshold for oscillation stability. Oscillations under 0.1 are

considered to be sufficiently damped over time, as shown

in Figure 2.13. Although there is no specific threshold for

aircraft stability, it is commonly understood that an aircraft

is designed to handle small deviations near zero without

significantly affecting its stability, as explained in [7].

If the system is unstable, corrections may be applied to

bring the control state closer to stability. The recommended

corrections for control are determined by comparing the

current state to the desired state, which is a zero vector.

Certain limits on the correction are applied in order to

prevent extreme changes in aircraft control, though

specific limitations vary. As stated in [7], the system

should be able to handle moderate changes in control, but

extreme adjustments should be avoided, as they can be

unpredictable and difficult to manage.

The following source code calculates corrections and

applies them:
def recommend_correction(status):

fixed maximum correction limit

max_corr_limit = 10

needed_corr = -status

maximum correction limit as 10%

max_corr = np.maximum(0.1 * np.abs(status),

 max_corr_limit)

compares the corrections

corr = np.sign(needed_corr) *

 np.minimum(np.abs(needed_corr),

 max_corr)

 return corr

def apply_correction(status, corr):

updated_status = status + corr

return updated_status

The program continuously asks the user whether they

wish to apply the recommended corrections while the

aircraft remains unstable, this simulates the ongoing

stabilization of an aircraft over time. The program stops

either when stability is achieved—i.e., when all elements

of the state vector x are within the stability threshold—or

when the user decides to stop the process.

The following source code shows the overall flow of the

program:
def main():

...

A = input_matrix()

eigval, is_stable = check_stability(A)

print("Eigenvalues:")

for eig in eigval:

 if np.iscomplex(eig):

 print(f"{eig.real:.3f} + {eig.imag:.3f}j"

 if eig.imag >= 0 else f"{eig.real:.3f} –

 {abs(eig.imag):.3f}j")

 else:

 print(f"{eig.real:.3f} + 0j")

 if is_stable:

 print("System control is stable. No further

 action needed.")

 quit()

 else:

 print("System control is unstable.

 Adjustments may be needed.\n")

initial state vector has to match the matrix

 size

x = input_initial_state(A.shape[0])

while True:

 print(f"\nCurrent state: {x}")

 # stability threshold

 if not np.all(np.abs(x) < 0.1):

 print("System is unstable.")

 corr = recommend_correction(x)

 print(f"Correction recommendation:

 {corr}")

 # asks about applying the correction

 apply_corr = input("Apply control

 corrections? (y/n): ")

 .strip().lower()

 if apply_corr == 'y':

 x = apply_correction(x, corr)

 print(f"State after corrections are

 applied: {x}")

 else:

 print("No corrections applied.")

 else:

 print("System is stable.")

 quit()

 # asks about continuing the simulation

 cont = input("Continue simulation? (y/n):

 ").strip().lower()

 if cont != 'y':

 print("Simulation ended.")

 break

IV. RESULTS AND ANALYSIS

Testing is conducted on the source code to evaluate its

functionality and generate results. These results are then

further analyzed to provide insights. The data used in

testing are dummy data, consisting of randomly selected

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

numbers designed to be logical and consistent with related

research.

A. Test Case 1: Stable System Control without

Complex Parts in Eigenvalues

This test case evaluates a stable system control without

complex parts in its eigenvalues. The matrix A used is as

follows:

A = [
−0.6 0.3 0.2
0.1 −0.8 0.4
0.2 0.1 −0.2

]

The program receives the matrix A input and checks its

eigenvalues. Since all of its eigenvalues are negative in the

real parts, the program determines that the system control

is stable and no further action is needed.

Fig. 4.1 Test Case 1 Results. (Source: Author)

B. Test Case 2: Stable System Control with Complex

Parts in Eigenvalues

This test case evaluates a stable system control with

complex parts in its eigenvalues. The matrix A used is as

follows:

A = [
−0.5 0.2 0.1
0.1 −0.7 0.3
0.2 0.1 −0.6

]

The program receives the matrix A input and checks its

eigenvalues. Since all of its eigenvalues are negative in the

real parts, the program determines that the system control

is stable and no further action is needed. The complex parts

do not directly affect the oscillations, so they do not affect

the system stability.

Fig. 4.2 Test Case 2 Results. (Source: Author)

C. Test Case 3: Unstable System Control and Stable

Initial State Vector

This test case evaluates an unstable system control and

a stable initial state vector. The matrix A and vector x0 used

are as follows:

A = [
0.8 −0.3 0.4
0.5 0.9 −0.2

−0.4 0.3 1.0
]

x0 = [
0.04

−0.05
0.03

]

The program receives the matrix A as input and checks

its eigenvalues. Since none of its eigenvalues are negative

in the real parts, the program determines that the system

control is unstable and adjustments may be needed. The

program receives the vector x0 as input and checks its

elements. As all elements fall within the stability threshold,

indicating that the oscillations are near zero, the system is

considered stable.

Fig. 4.3 Test Case 3 Results. (Source: Author)

D. Test Case 4: Unstable Three-Axis Autopilot

System Control and Unstable Initial State Vector

This test case evaluates an unstable three-axis autopilot

system control and an unstable initial state vector. The

matrix A and vector x0 used are as follows:

A = [
0.8 −0.3 0.4
0.5 0.9 −0.2

−0.4 0.3 1.0
]

x0 = [
12.8

−1.742
0.06

]

The program receives the matrix A as input and checks

its eigenvalues. Since none of its eigenvalues are negative

in the real parts, the program determines that the system

control is unstable and adjustments may be needed. The

program receives the vector x0 as input and checks its

elements. As not all elements fall within the stability

threshold, the system is considered unstable.

Fig. 4.4 Test Case 4 Results Part 1. (Source: Author)

Since the system is initially unstable, it recommends

specific control corrections based on the current state x0.

When the recommendation is rejected, no corrections are

applied.

Fig. 4.5 Test Case 4 Results Part 2. (Source: Author)

Since no corrections are applied, the current state x

remains the same as x0. With the system still unstable, it

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

continues to recommend control corrections based on the

current state x in order to reach desired state. When the

recommendation is accepted, the corrections are applied to

the state x.

Fig. 4.6 Test Case 4 Results Part 3. (Source: Author)

The system continuously monitors the state of the

system and recommends control corrections based on the

updated state x. These corrections are recalculated after

every state update. This iterative process continues until

the system achieves stability, where the oscillations fall

within the set threshold. This process continues as long as

the simulation is running and is not interrupted by the user.

Fig. 4.7 Test Case 4 Results Part 4. (Source: Author)

E. Test Case 5: Unstable System Control with Non-

Three-Axis Configuration and Unstable Initial State

Vector

This test case evaluates an unstable system control with

non-three-axis configuration and an unstable initial state

vector. The matrix A and vector x0 used are as follows:

A = [

0.5 0.7 −0.8 0.6
−0.3 1.0 0.5 −0.4
0.4 −0.6 0.9 0.8

−0.5 0.3 −0.7 1.0

]

x0 = [

0.9
−0.8
0.6
0.7

]

The program receives the matrix A with dimensions

other than 3 × 3 as input and checks its eigenvalues. Since

none of its eigenvalues are negative in the real parts, the

program determines that the system control is unstable and

adjustments may be needed. The program receives the

vector x0 with a size corresponding to the number of rows

in matrix A as input and checks its elements. As none of

the elements fall within the stability threshold, the system

is considered unstable.

Fig. 4.8 Test Case 5 Results Part 1. (Source: Author)

As the system is initially unstable, it recommends certain

control corrections based on the current state x0 that could

stabilize the system and reduce oscillations. When the

recommendation is rejected, no corrections are applied.

Fig. 4.9 Test Case 5 Results Part 2. (Source: Author)

Since no corrections are applied, the current state x

remains the same as x0. The system continues to

recommend control corrections based on the current state x

in order to reach desired state when the system is still

unstable. However, the process can be interrupted by the

user, halting the simulation.

Fig. 4.10 Test Case 5 Results Part 3. (Source: Author)

V. CONCLUSION

This study successfully analyzes the role of complex

eigenvalues in an aircraft dynamic system stability for

autopilot control. The developed program replicates the

functionality of an autopilot stabilization system and

determines system stability by examining the real parts of

its matrix eigenvalues. Additionally, it can recommend

control adjustments to achieve system stability, where

oscillations are near zero, as demonstrated by the test cases

conducted.

The program can be further enhanced to handle external

factors that affect control like wind, simulating real-life

conditions. Using concrete data from experiments in

further development could also improve the program’s

accuracy.

In conclusion, the analysis of aircraft dynamic system

stability for autopilot control through complex eigenvalues

offers valuable insights regarding the practical application

of the complex eigenvalues concept. These insights can

contribute to advancements in autopilot algorithms and

other stability control fields, helping create more reliable

and efficient control systems.

VI. APPENDIX

The source code for this paper, titled Analyzing Aircraft

Dynamic System Stability for Autopilot Control through

Complex Eigenvalues, can be accessed at:

 https://github.com/naomirisaka/Makalah-Algeo

VII. ACKNOWLEDGMENT

First and foremost, the author expresses deep gratitude

to God Almighty for His guidance and strength in

completing this study. The author would also like to thank

Dr. Ir. Rinaldi Munir, M.T., their Linear Algebra and

Geometry lecturer, for sharing his knowledge and

providing guidance. Lastly, the author expresses heartfelt

https://github.com/naomirisaka/Makalah-Algeo

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

thanks to their family and friends for their unwavering

encouragement and throughout this study.

REFERENCES

[1] R. Munir, “Aljabar Geometri: Review Matriks,” IF2123 Aljabar
Linear dan Geometri, 2023. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-01-Review-Matriks-2023.pdf. [Accessed: Dec. 23, 2024].
[2] UCL, “Lesson Plan 11,” University College London. [Online].

Available: https://www.ucl.ac.uk/~ucahmdl/LessonPlans/Lesson11.pdf.

[Accessed: Dec. 23, 2024].
[3] R. Munir, “Aljabar Geometri: Nilai Eigen dan Vektor Eigen (Bagian

1),” IF2123 Aljabar Linear dan Geometri, 2023. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-
2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf.

[Accessed: Dec. 23, 2024].

[4] R. Munir, “Aljabar Geometri: Aljabar Kompleks,” IF2123 Aljabar
Linear dan Geometri, 2023. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-24-Aljabar-Kompleks-2023.pdf. [Accessed: Dec. 24, 2024].
[5] NASA, “Aircraft Rotations,” NASA Glenn Research Center.

[Online]. Available: https://www1.grc.nasa.gov/beginners-guide-to-

aeronautics/aircraft-rotations/. [Accessed: Dec. 24, 2024].
[6] D. Katzman, J. Moreno, J. Noelanders, and M. Winston-Galant,

“Using eigenvalues and eigenvectors to find stability and solve ODEs,”

LibreTexts Engineering. [Online]. Available:
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineer

ing/Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dyna

mical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvect
ors_to_find_stability_and_solve_ODEs. [Accessed: Dec. 24, 2024].

[7] M. Carley, Aircraft Stability and Control, University of Bath, 2020.

[Online]. Available:
https://people.bath.ac.uk/ensmjc/Notes/stability.pdf. [Accessed: Dec. 24,

2024].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Januari 2025

Naomi Risaka Sitorus – 13523122

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-01-Review-Matriks-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-01-Review-Matriks-2023.pdf
https://www.ucl.ac.uk/~ucahmdl/LessonPlans/Lesson11.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-24-Aljabar-Kompleks-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-24-Aljabar-Kompleks-2023.pdf
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/aircraft-rotations/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/aircraft-rotations/
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs
https://people.bath.ac.uk/ensmjc/Notes/stability.pdf

